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i ship folliowing in %he wako of another ship
of comparable size experlances a change in hydrodynemic
forie and momsnt due to the tubulence and wawes generatsd
by “he leading ship, PFor two identiesl wall-sided ships,
of Uinite draft; in tandemg the force and moment due %o
waves, osxperienced by the tralling ship, =~3 derived
by using Legally®s theorem and the usual essumptiions
uged in the theory of wave resistance. The forece is
takon in two components, horizontal and vertiecal; and
the acvment 13 found aboub a dransvevse axls vhrough the
aanizor of mass of the ¢railing shipe.

Procedurss apprlicable o the evaluation of
gaii inbograls involved are indicaied and the results

for $he force components and significans moument come

%

ponanisd are listed. Womerizsal vaiuneg aws aaleniadod
for some significant Torgy and mcoament couponents &and
curves ars pliothed showing the irend of the varicus

components,
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I. Introductien

In 1950, the authors, preseated a paper,
"The Dynamic Stability on Course of a Towed Shib",
before the Society of Naval Architects and Marine Engineers
(1) It was an introductory investigation on tha atability
of a towed ship iu.which only the motion in the horizontal
plane was conzidered. Dus to the cozplexity of the
prodblem and o determine the effect of qunntiti&n of
ps jor importance, many refinements wers idealised or neg-
Jeoted,

One offect which was neglected was the hydro-
dynamic influence of the towboat on the towed ship. As
'aé pointed out by E, H, Peters, in the dissussion vhich
followed the afore menticned paper, this effect iz very
significant in the analysis of the towing prodlem,
espscially for the cass of a short tow, This fact was
oxpérimontally verifisd by B, G. Barrillon {(2) whe.
found that %he hydrodyngmic influaence on ths trailing
ship was noticeable even when the distance bottéén'ths

towing and towed ship was of the order of five ship

To obtain a physical ploture of the problem,
imagine an unpowered ship moving with steady veloclity
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ﬁt' on a calm sea, The shilp exveriences a total resiztaunce,
the sum of frictional snd residual resistance, of whish
wavs rasistence is the chief part of the latter. If
ncw another unpowered ship moving with the same steady
.velocity is introduced directly ahead of the existing
ship, the trailing ship will experience a change 4in
resistance, The Change in rosistance is largely due
to the turbulence and waves gonerated by the leading
ship. Tke turbulence and additional wavea affect both
the fricticnal and wave resistance encountered by the
trailing ship. In addition, the presence of the leading
ehip neer the trailing ship will give rise to forces of
mutual action which may be classed as dus %o local
disturbances,

In 1936, T, H. Havelock wrote & paper on the

Y T

mutual action botweon two hodies (3). The gononﬁi:dotion
" ‘between two bodies are given and are appllied to- several
cases of a pair of doublets which are orlented 1&“'”

'diffbront positions, Only the horisontal oomponent force

;‘a doalt with and the vertical component and momont
ﬁfexperiencod by ths tralling body are not diacussodg
%;;g,n“}ﬁj; In a later paper (2), Havelock appliod ono

part of the equations developed in his earlier pcpqr to
.. & wall-sided vessel of infinite draft. Kquationa"for
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showing the trend were not shown. A3z a {irst appr
i . mation, the use of an infinits draft is quite adequate
since thoge parts of the shlp-form which are situated
very deep below the fluid surface do not alffect the
wave resistance seriocusly. For a closer approximation,
however, Haveloek does show (4) that the effect of
dscreesing draft becomes appreociable especially for
i small draft-length ratios at high velocities.
The present investigation is an extensiom of
the work done by Havelock and deals with oniy that part
of the nydrodynamic force and moment experienced by the
trailing ship whish is due to waves and the presence
of the leading ship. The finite draft which was neglectcd
ty Havelock will also be considered. The effect of

T P T PR

friction on the force and moment, which is complicated
by the turbulence oreated by the leading ship, will not

be discussed,
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Assunmptions and Methods in Wave Resistance
Any surface ship in motion encounters a toial

resistance which ma, be classified into several mutually
dependent components. They may be classifiad as (a)
frictional resistance which iz asesumed to be the resistance
of a fiat plate, of the same roughness, length, and
surface area as the hull of the ship; (b) pressure
resistance caused by presnsure shanges due tc viscosity,
especinlly in the after body; and {(c) wave resistance .
which follow beshind & ship. Anothsr ¢ype of resistance
is spray resiastance. However., this is an independent
physical effect and 1s only important for high speed

§: ships,  u

| In the present state of development the the~

oretical analysis of wave resistance 1s, =t b@st,.gn

E
E
;
;.

"épproximation. To facilitate practical analys;é m@ny
aésumptions have to be made and thus a complete solution
cannot be obtalned even £cr the simplest of ship?shnped
forms, Perhaps the greatest violation of physiéél;fact
418 the use of an ideal fluld aud the aasumptioﬁ ih#t
the wave resistance 1s independent of the other. forws '

of resistance, These asaumptions are justifiable only

because of the need for systematically simplifying a

~ BN PRI NI S T e T —r




Q: complex problem.
Purthar agsumptions are as follows:
(1) The veloclty deviations due to the presence
of ths ship?’s hull are small relative teo

the mein stream veloelty.

~~
™
et

The helght of waves generated by the shilp's

hull 1z smell relative to their longth.

(3) Trim and sinkage do not affeet the wave
roealstence,

{4) Interfevencs vetwsen the ship's hull and

wave gystem doss not affect the wave

ro3istencs,

{5y Ths inclination of the tangent plans to

(o )

tho median plane sf any peoint on the
surface of tho ship 1s small,

{87 The fluld 1s non~viscous, of Infinite

TR FTROY O T

depth and unbounded on the riss suriace.

{7} Surfpce tonsion on the free aurfass is

nsgligitia.

{8y Tho senditicn of atmospheric prsasure on

!
s
£

tho leoe suriace is satlsfisd st the
undistuarved free surface and not at the

dizturbed free surfaco.
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Taking all these sssumptions into consideration,
the actual physical picture is far removed from the
theoretical plcture with its many assumptions. With
all these assumptions, the general agreement which exists
between experimental and theoretical results is very
surprising indeed.

There are several methods of calcuvlating ths
effect of waves on the hull of & ship. To mention a
few, the pressure changes due to wave motion may ve
integrated over the surfese of the hully the wavo energy
left behind the ship may ba calculated; the energy
dissipation using Raylelgh’s dissipation cceffioient may

be calculated; and foreces experienced by hydrodynamic

=

singularities (sources and sinks) may be calculested, ,

; The method which seems best sulted to the two body
problem of towing is the last ons, the calculation of
forces experiancsd by the hydrodynamic singularities
which together with the free atresm represent the bodiea;
i Lagally's theorem (5) is indispenseblis in this
3 mathod. 1t enables the calculaticn of forces and mcoments
E experienced by the hydrodynamic singularities. The

:g . resultant forces ?1 and resultant moments ¥ acting

, on a body whose surface is a closed stream surface of

&A’»
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the flula motion, are given by the vectors

Fi= - 4TpmT {
- {2.1)
Mg = «ry X 4TWpmiqg

ﬁhere mg 1s the strength of a source internsl to the
stream surface, qg 1s the resultant fiu id veloclity
wvector atv the iscalb un of the scurce Jus to a1l othe
sources, O is Zhe maas density of the fluid, ana

T§{ 1s the displacement of the source my from the
momsnt oenter. The forces 5; Have the direction of
= G1 and the lines of aoction pass through the point at
which the source 1is located. The vectors ii which

represent the resultant momenta 1is porpendlcular to the

,plane formed by ri and qb.

The motion of the 1deal fluid produced. by~
the hydrodynamio singularities and the free stream 15

SgEdl

‘adescribed by & velocity potential fs(x, ¥ Zs. n} which
: must satisfy Laplace's equation vﬁ# 0 and oonditlons

at the boundaries of the fluld, at the aurrace_otfghe
hull, an& »% the free surface of the liquid, ;i:mpat

' *:jffdiao so.4isfy the equations of wave moiion, Of gillfha

;lfégnditions to be satisfied, the conditions at the free

surfacs ceause the most difticulty.
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IIX, Free Surface Condition

In elemaﬁtnry hydrodynamics probiems, any
body moving uniformly in an unbounded ideal fluis at
rest at infinity, experiences, Sy D'Alembert's paradox,
no resistance. It may, due to its orientation with the
froe stream, experience a ﬁoment. Unlike an unbounded
fluid, in the practiéal application of theoretical
hydrodynamics to problems of naval architecturs, a free
surfacs must always be considered. For thias case,
despite the use of sn.idealized fluid in the analysis,

a body woving uniformly on or near a rree surfsace en-
counters resistance due to.the energy required in creating
gravity waves which travel with the body. .

To obtain the free surface condition, ccnasider
a stétionary right handed systen of xysz axes in the free
surface of a stream flowing with stoady velocity o in
the negative x-direction. The origin ahd the x and Yy
axes are placed in the undisturbed iree suriace and the
z-axis is verticalilly upward.

Now consider two points on the free surface éf
the stream, One point is taken near a disturbance and
the other point is taken at infinity. The disturbance
Zs of such a nature that its effect at infinity 1is

nagligible. For these two points, assuming that any
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deviation of a fluid particle is resisted by a force

proportional to the fluld velocity, the pressure equation

may be written as

2 5
-:-:— +-z'~[(c-r¢x)z+ 4>:+ ¢;]+1(Z+’I)“/*'¢=-‘§‘~ +5t+9z  (3.)

vhere p 1s the mass density of the fiuid, p ‘and

. 'Po 8are thse pressures at the disturbance and at infinity

respectively and ¢ 13 the surface elevation from the
undisturbed free surface. The quantities - (¢ + ¢&),
- éy. -»¢& are the absolute velocities cf the fluid at
the disturbance, The quantity /4'4: is the force potene
tial which introdrces the hypothesis of & frictiénal
force proportional to the deviation of the fluld veloclty
from the uniform flow c¢. This hypothesis is adopted to
keep various integrals convergent in the subseguent araly-
sis (6), (7). However, since wave resistance 1s calcu-
lated for a frictionless fluld the final fesult will be
simplified by letting the frictlional coefficient ' tend
to zero.

The quantities '—¢;, -43,'-+z are the devia-
tions, at the dlsturbance. of the fluld velocity from
tce uniform flow ¢ in the x, ¥y and 2z directions,

By assuming that the vector sﬁm of these devietions 1is
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small, 1l.e., that (4’: ¥ ¢;~ +&:) 1s negligible, the

prassure equation becomes,

. . 4
—F-f-céx-r?)?-/"Q:%- (3.2)

Now by assuming that the pressurs on the free surface at

(54

he disturbence 15 sgual ¢

cd +en-puéd=0

or

SE VLIRS (3.3)

This equation gives the elevation of the free surface at

the éisturbance.

The general boundary condition wi “ch must be
satisfled at the free surface 1s that there shall be no
flow across the free surface, 1.e., the velocity, rela-

tive to the firee surface, of all particles lying in 1t

msrcammde o Al e o o YO AL M. ..o #
must bs tangsnt o ths surface. IT the free surface is

given by the equation F(x,y,2z,t) = 0, this boundary

condition may be expressed as

dF
-_—= F ufF_ + vF e o (3.4}
dt= g * Wy "y""z“ { }

Samrasammrer e - 2 N et — - s vaorcree
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where u = - {c +¢ ), v= ..4,9, wr - ¢z'
In the present problem, the equation of the

froe surface is gilven by

z = pix, 3}
or

F(X,7:25t) = 2 == ){v (x,5). (3.5)

The Eq. {3.4) becomes

(et )y + 0, ~$,(-7;) =0 (3.6)

Assuming that the wave height 13 small in comparison to
the wave length, the slope of the waves become small
quantities of rirst., Then by neglecting small guantities

of sasconé order, Eq. (3.6) bscomes,

Comtining Eq. {3.3) and Eq. (3.7) the result is the free

surface condition

{)xx-!- K°¢z . ;ubx =0 (3.8)
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&t z = 0. and where K = g/c? and p=u’/e. The
velocity potential which describes the motion of the
ideal fluid and ths distribution of sources and sinks,
which together with the free stream represents the bodies,

muet satisfy this free surface conditlon.

{P
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IV, Veloclty Potential

Using the same axes as in the previous section,
consider & simple source of strength m at (0,0,-f),
traveling with uniform velocity ¢ in the positive
redirection. In the absence of a free aurrado;ana.in
& fluid of ixnfinitce extent in sll directionz, thé.velo-

city potential 1s
¢ b m/i"l - (4.1)

where (x*:'_)2 - x° 4 7 + (2 + £)2. In the presence of
a free surface, the velocity potential may be writton
as (8)

$ = m.,/r1 + :? my/ry (4.2)

where (r1)2== (x - xi)z-r (y = y1)2-+ (z - 31)2.

The summation :Eigmi/ii represents an imsge system,
a distribution o} hydrodynamic singularities, in an
unbounded fluid, which together with the given source
will produce a free surface.

Making uise of the kncwn integral (8)

. S e i Pt D o B . 8 T PP PO T 5t . et L M AL VA
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(x® + y2 + 2B)* 2
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for z2>0 and
L {4.3)
T ® ) 82
iw+2
(x® + y2 + z2)* 2W
T o
for z<0 )
the velocity potential is assumed to be of the form
s s o= \
K iw~(& +F)
_ o= Mlgel e oE ]dK
{ L .
F o 3 (4.4)
v - _
+id
+Jdé F(o,k) e X2 1) 4
i /
§ -F ©
: where W = x cos @ + y 8in O, and only the real part is

R Y

e iy

v
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to s used.

Substituting ¢ into the free surface condi=~

tion, Eq. (3,8), it can be sghown that

hid3

Fl(O,K) = (4.5)

& A s o



R ETNRETRY

RO Y S T

e

AR AT B YR

TR

%

e o oA A oS i P it £ B S i e - e S 4 Al e e S bt S

B

The velocity potential then becomas, after some reduc-

tion,

'l 0 - e
p=t1om _Kem[ e ua[ 8RN L
n n m K-k sec*d rinseco '
-.*n- ©

where

lz-z 2+ y2 « (2 + )2

S x2+ 2 + (z = £)°

-

e |

3

=

W = x co8 © +y ain O,

The limiting value of Eq. (4.6) 18 to be taken for Ai—+0.
The first term represents the glven source at

(0,0-f); the second term represents a sink at (0,0,f),

and the last term represents a contizucus distribution of

sources and sinks, in the plane 2 = f, trailing in the

negative xedirection Lo infinity. The last two terms

form the image system which 18 required to produce the
froe surface (9).

Instead of an isolated sourcs, f
continuous distributlon of sources bulow the free sur-

face, the source strength m 1s replaced by o ds

_where a is the surface density of & sourse on a surface

dS at & point (h,k,f) within the fluid. Applying the
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principle of inverse flow, the velocity potential for a
general continuous distribution of sowrces in an ideal

fluld with a free aurface 1is

. )
b= i S
P=m cX t J( n rz)a-ds s
T (a.7)
® x['(z-ﬂu‘mj .-W;.Z.A
T JK"K.acce-n;ucce J i
v —Tr ..."

where ¢ 18 the speed of the free stream in tho,_niégative

" xedirection and

nP=fx-nfr -2+ (2 +10)°
rfa(zxenfr (you)2+ (s - 02,

2
v = (x =-h) cos & + (y - k) sin 6, .
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V. Source Distribution .
A complete determination of the distribution
‘of sources and sinks which will satisfy all tho.bbundary
conditions 1s a very difficult problem, The problem
is somewhat simplified by considering a distridbution of.
sources and sinks teken over the plane y = O inétead ori
a distribution ovor .a volume, This ia only poruieaiblo
for a narrow ship's hull, If at the point (h,0,-f), o
is the source density, the toval sireugiu Gver & cmall
area dS 1is g°ds and the corresponding flux is 4 Qg 4%,
Considering the entire source distribution, since it is
continuous within its limits, the vslocity flows cutward
ﬁormully on both sides of the plane y = O. The velocity
.norml to the plans y =0 4s thus 4 g d3/ 288 = 2T 0T &
This normal velocity is related to the form
of the ship by considering the conditlon which must be
satisfied at the surface of the ship's hull. The
boundary condition is that the normal veloclity of the
ship's hull and the fluid in contacs with it must be the
same. The equation which expresses this boundary condition

18 the sama as Eq. (3.4),

€ _ o -
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If y = F(x,2z) 1s the equation of the surface of :the
ship, then this boundary condition is expressé?!'by'~
(6 =u) P+ v=wFyg=0 ... (Be1)

It 45 222umed here that the inelination of the

tengent plane to the median plane at any point on the

surface of the ship i1s small. This condition is not
satisfied at the bottom of modern ships. Howevar, since
most of the wave resistance is due to the upper part of

the immersed portion of the hull, it is a reasonable
assumption., With this assumption P, and Fp, will

be small, and since u=- ¢ , V= - 49 and w= = ¢,
were considsred amally by neglecting amsll quantities of

second order, Eq. (S5.1) becomes

ve -« ¢ F,, (5.2)

Row by assuming that the velocity in the y-direction at

the hull 1s equal %o the velocity normel tc the plans y =0,

d‘=~——§— FX::-_C— @-‘2 (5.3)
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describing the surface of the hulle Eq. (5.3) is then
the usual approximation for the density of the distribue-

tlon of asources and sinka over the median plane of the
shlp's hull,
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V;b Forces cn the Towed Ship

Consider two 1dentical wall=gided ships A
and B, or: right behind the other, placed in a atream
which flows with constant speed ¢ 1in the neggp;va
x'-'difect_;ion. The ships are gspacec such that the distaqce
between thelr centers of 'mésses. is egual to L, The ships
are of length 2 , beam 2b, an& draft d. Ship_A.rep;
resents the towed ship and ship B represgents the towing
ship.

A right handed system of body axes y, z
with the origin 1n the undisturbed free surrace ia
fixed in ship A as shown in Fig. {6.1). The equatlon

‘which describes the water plane section of ship ‘A 1s

y=v]1- (x/7)2] (6.1)

where -Z < x £ ] . For the ship B the equation 1s

e b{l = [(x x L)/l] 2} (6.2)

‘where (L «l1)&x £(L +1).

Each ship %1ll now be replaced by a continuous
distribution of soiurces and sainks over the vertical median

plane as described in the last section. Following
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A
E Eq. (5:3) and referring all quantitles to the axes fixed
in ship A, the source densities, Ta and Ty » for the
ships A and B are
i (bex)/(TL™)
waere -] < x <1 ., and
(vetx « L) | /(T 22)
o = L e(x « L} |/
where (L - ¢ )<sx <I(L +1).
From Eq., (4+7) and again referring all quantities
‘ to the axes fixzxed in ship A, the velocity potential of the

above source distribution in the uniform stream will be,

rl ' YA
¢=ch+ J (—l:—;--?',;)czdh#f J (-é—-;';)oaahdf.,
ov-1 271} <
l Tt Lol L > (8.4)
. -%‘:l- Jo;dbﬁ + Ja;ahd-F [seczede
ov-1 o7L-0 -

r°° -K(f-z)+r iK®
e

dk

J K- K,sect6 riusecé
o

-~ AR, AT . . - DI, IR TN S e TN PN e i
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where u and w are ths magnitudea of the companents of
G In the x and 2z directions respectively. The resul-

tant forces in thé X and & directiona on the distridu~

tion A willl thon bde

4.1
Ry= = -i‘!?pJJua-Adh'df’,
o=l

o~
(4]
®

X

Rs X - 4‘“’prd

\y

o

The velooity components u and w £n terms

of the velocity potentizl ¢4 are

1
L)
> S ’é‘%g
i (6.8)
WS e 9_*..
ot
/

where the term (1/r1) 7 ,dhdf, the velocity potential for
a sousce at any point (x,y,z), has Soen sliminated from

¢ « Then
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u(h’;o,-f') s - ¢ or[d'aiah‘F "'J‘[ {Cﬂ—dl)c'sd‘\af
1 -1 _

o "~ (]

w P et 7

4+ 2e no-ahdf f'j- [« dhaf |
w B

i o J1~1 J

L © K (F+§)+ 1K(h~h) cos 6

X | seced® e Kdk

J K~ sec’@+imseco
- (-]

and

o‘Ll

: . d 14l
- w(B!,0,af) = JJ gy dhdf + r[ GRIALX L
5 . '.z

[~}

(2

J
+;,f.‘g r[c dhdf 1'[ Ty dhdf

Vo' - .

KdK

c¥ -x(hf')ﬁk(h h)cesé
xj sec0do
o

-1

K-k, cec’o+ip secd

whers

d hte« h
[h‘- 2 + (£ + r')z]

o( h' h
[{h'- w2 + (£ - £ 2]*‘

e e i Y soecann > C VT SAVE SR i A e 8

L. (6.9)

- } (6.,10)

b (6:11)
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ﬁ. = : L+ ﬁ ’
[(ht= n)2 + (£ + £1)8]% 1.
> (6.11)

_ £ o2 :
[(h'-' h)2 + (£ = 2 )2]5’2.

&

Substituting Eq. (6.9) and Eq. (6.10) into Eq. (6.7)

Ry= X + X x5+x4+x5+ Xg» (6.12)

where

art
X, = 41rfc[ [O-A’Jh'df',

0.1

nd ot l
X, = 4 Wp [g’dh{df’r[x,qdhdf 3

Jo J’i’- ‘0 J_l

\J I\l .J \Li’l
| G'dhdf’| | o, 0 dhdf,
JO J‘i Jo 4

L-1

~d (1 rdplrl
o= ot | [oaar || g ot

* oll Yo -1

e T O SRR AL IR e M), DM et hilT N RSP DA s TS 9 =3 NP e wse

e
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dpi t
Xg=—4 irK,I [ LT Ja; dhdf
oLl o~

K-K,sec*0 +i usece

_“ R []

Xq=~41p KOJ i o;_'dh'df‘rfwadhdi
o1 Jo -1

ser 040 | 2 KdK -

< r' J’ —x{f+F)+i K(h-h) cos 6

K~K sect0 + i psecd
(4

-¥
The result for the force Ry 1s

where
dnl 3 ¢l
Zy= - “TPJ lo;’%‘af'JJ 6,0;441,# "
o %} o 17
il d pll
2y = - “TFJ Jg’dk’ﬁ" [{3, g dhdf,
' oVl Jo vt

r¥ @ K+ ITiR{H-h)cos 0 . e
X | secadé} £ KdK 4

{6.13)

§
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~d .nl ~d ~LtL
Zy=e 4 TWp | | GUkds’| | Bag dhdf
Jod-} Jodist
~d nl rd ol
Zg== 4 pK,| loz’dnds’| | oz dndf
’ uodz Jo'kl ’
T. d ’ R U ’)
2 | ke ikibhlese
X secedél e“ — e —— KdK o
l‘_ J° k"“.:“ LY g I.’tl PELT
’ ’ i‘drl dpolvl
25 = = 4 FKO G;'Jh’df’[ J~0'B¢U\ df
091 ol R Y §

W . —k(§+€)+ 1 K(h-h) cos @
XJ“‘“Q L Kdk -
(4]

K-K,sec?d +{usecéd
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QIE VII, Interpretaticn of Force Comnonentis

Thoe different components of the forces in the
x and 2z direcfions represent the forces between the
various parts of the sourcse distribution. To describe
the varlious force and moment components, the interpreta-
tion of the various parts of the velocity potential which
desﬁfibes the flow due to the source distribution, which
is given in Section IV, must be known.

The firs?® component of Rx »

ipl
ST EY
X, = 4“PCJ\J‘%J“{

ov-l

represents the force on the distri!oution A due to the
uniforin stream, However, since the total source strength

over the distribution is zero, it 1s equal to zero.,

For the second component

: dpt
Ko = 4Tp Jeﬂ“‘lj Jog‘o;‘am

ov-? o -1

consider two sources of strength m sznd m' at the

®
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peints (4%,0,£} and (n',0,=£') respectively, a=
shown in Fig. (7.1). The magnitude of the force between

m and m' 1s given by

4r£m m*
2
b o

where r {8 the distance between m and u', Thé force
acts along the line drawn vetween =m and wu' aad 18 an
attraction vhen m and m! ars of like sign. When n
and m' are of unlike sign the for.e is a repuvlsion.
Referring to Fig. (7.1)
r? = ('~ 02+ (£ + 292,

Then ths Jorce between m and m' becomes

4Tpm m*

thr- h)2 + (£ + £1)2
The horizontal compbnent of this force is

4T Pmw (h'~ h)
3,
[(h'--h_)z-t-(f + r')'2] =

e -3 v v N T e 2= - T ——
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I a represents a certaln dists=idution over

an are& A in the piane y = 0, we may write

. J [O-Aaw.

A
Similarly 1f m' represents an identical distribution

except possibly for the sign of m', we may write

e[ [rrmr

A
Then for the given diatribution of sources. the magni-

tude of the resultant force in the x-direction is

aTp| | otan'ds’ (h'=h) a,dhdf
"J J ‘ J I [OshFe (s ]%
A A

Comparing this equation with the component X,, it is
cloar that the form and magnitude are the same, Hence
xz represents the resultant force in the x=direction,
on the distridbution A, due to the forces which exiat be.
twoen the sources and sinks in the distribution A and

1ts image system, excluding that part of the image sys-
tem which tralls af't to infinity.

 PROTEIIRINTE - e T saadil VLSRRIV el T al —
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By following the same reasoning, it can be

shown that the component X, 1s the resultant force.

in the x-Jdirection, on the distribution A, due'ic the
forces between the snurces and ainks in the distriﬁution
A and the image of the sources and sinks in the distri-
bution B, again excluding that part of the image system
of the distribution B which trails aft to infinity. The
component X4 represents the resultant force in the x-
direction, on the distribution A, due to the forces be-
tween the sources and sinks in the distribution A and B.
For the remaining distribution which trails aft
to infinity for both distribution A and B, the velocity

potentlal 1s

rd i+l ' g & ’ ~
f - “K($+F)+ iKD
- KXo adhdt +| | agdhdf| | sec’odo| ' KdK
o A K-Kse*d+iusecd
3 o [-]

1=t -%

as glven by Egq. (6.,4). The first part glves the.trailing

aj&tam for the distributlion A and the second part gives
the trailing system for the distribution B,

The resuli;ant force in the x-directicn on the
distribution A for this case cannot be shown as simply

as was done in the previous cases. However, a little

A AR e — Rt e
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reflection on Lagally's theorem and this part of the velo-
city potential will show that X5 repregsents the resul-

tant force in the xedirection, on the distribution A, due

_ to the forces between the tralling system for théldistri-

bution A and the distribution A itself. Thiz expression
is the nsusl form of the wave resistance for a ship alone
on a ¢alm sea.

The component Xg 1s the resultant force in
ths x<direction due to the forces between the distribu-
tion A and the trailing system for the distribution B.
Physically this term represents the wave reslistance on
the distribution A duc to the wave interference caused
by the waves left by the distribution B, or tha'tcaing
shipe.

with the foregoing interpretation, the force
R, acting on the distribution A, may be cimssed into
three parts; (1) the wave resistance of the towed ship
as if existing alone on & calm sea, {2) the mutual
action betwesn the two systems which may be classed as
dus to local disturbances, and (3) the wave interference
acting on the towed ship (3).

Folloving the seme procedure, the interpretation
of the varicus components in R, may be given., The firsat

component 2, repressnts the resultant vertical force on
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bution A and its image aystem excluding that part of the
image system which trails aft to infinity. The compe-
nent Za represents the resultant vertical force on the
distribution A due to tie forces between the distribu-
tion A and the image system of the distribution B, agsin
excluding that part of the image system of the disteibu~
tion B which trails aft to infinity. The comporent Zg
repressnis the resultant vertical force due to the forces
between the distribution A and the distridbution B. Finally,
24 and Zg represent the resultant vertical force on the
distribution A due to the forces between the tralling
system for both distridbution A and B and the distribution
A 1tself,

-
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VIII. Moment on Towed Ship

i To obtain the expression for the momsnt,

£ consider again the sourcs of strength vh'dh'df' at
the point (h',0,«f') 4n %he diatribution A. By
Lagaliy‘s theorem for momsnts, the moment about the
center of mass of the distribution A due to the forose

on this source is given by
dL = - F X 4N p(a,'dntarr) g (8.1)

where T i3 the displacement veotor of the source
0,'dh'df? from the center of mass of the towsd ship as
K. shown in Fig. (8.1).
If the acurce distribution is taken in the

vertical median plane of the towsd ship

|3
]

&
E

Fah T +(f =« €)% {8.2)
where L and ¥ are unlt veotors in the positive x

of the center of gravity of the towed ship from the
origin of the coordinate aystem. The resultant velocity

at the point (h',0,+r'} may be written as

G=z=ufl+vj+ek (8.3)

T e PTICS M < T QI £ Wt v o A 2, S
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where J 15 a unit vector in the y-direction. However,
for a distribution of sources taken in the vertical median
plane, the resultart velocity v at this point will be

equal to zero. Then

F X3 -:T[(r'- €)u-n ] (8.4)

and

dL = - 47Wp (0, 'antar’) [(r'- €)u - h'w] I (8.5)

The total resultant moment on the distribution A atout an
axis through the center of gravity and parallel to the y-
a8xis will then be

l .
Ly= = 4Tp Jq’[(#ﬁe)u-h'w]éh'df'. {B.6)

The quantities u and w are given by Eq. (6.9)
and Eqs (6,10) respectively. Substituting into Eq. (8:6)

the moment then becomes

Ly= M1+ Mz-*- M3 + seee Mll (897)

where
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Y4
Ml = 4WPr c(f'- 6)05'4'1'4{' 3
J
o

-1

dpl d el
Mp = 4”?] (F-€)ay dn'df’| | &, dnat.
ou.z Jou_z .

o

rdprl rdpLtl
My == 47p J‘({’-e)o;"dh'df’. R, Tudhdf

o1 "o 1~

!

| F‘J i " rd (Lt

| M4 = - 4'"'PJ J({LG)OA'J'IJ'P{ J dza-ad"ld* 3
ov-2 oYLl

rd el dpl
Mg =< 4ip KoJ [(‘Le)%:Jh'J{'JJ%thF
o1 o1

sec*6d®

T
“K(f+§)+1k(h"~h)cos @
XJ r Kdk o

J K- x,sec’e-rl,u.sece
X

G-

. M[‘Z ’ o
Mo =<~ 4ipk,| l ($- e} 9k df’ | J q'Bclth
0d-1 -

w-x(f--ri’) +ik(h-h)cose

L x sec *0de J KdK o
(]

K-Kosec*@+insecd




My = 4 n'?m‘ h'a dh'dF’

J"l rJ -\Lf‘
My = 47.'9J WG| | 8, aydhdf

l

|

! o Jovi-1

|

l ) ( i

| M= 4 p k r amj Jo;&hdf

1 Yoy -1

‘ {» r“ -k(Hf‘)ﬂK(h*h) 036

| - X | secte db KdK ,
J K Kosecze-ri,u secé

] -¥ ©

rd l dpirl .
M= 4¢ K,J- Way 'dK'd J [ ay, dhaf
ol o i~

3.3 rw"
e

l’ - R s a
X | sec €40 KdK -
K-k, s€c’0 +i{ useco

=)

As wns dones for the forces Rx and Rz the

intsrpretation for the varlous components of Ly is as
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wdle

fcllows. MNj represents the moment on the distridution A

zabout the conter of masss due to the uniform stream. The

,pum of the components M, through Mg represents the -

‘moment of the distribution A about the center of-maas‘dqe

to the horizontal components of the forces between the

distribution A and (a) the image system of the distribu=

. tion A excluding the trailing system of sources and sinks,

(b} the distribution B, (o) the image system of sources

~and sinks, (d) the tralling system of the distribution A,

. e £

and (e) the trailing system of the diestribution B, In
like nanner the sum of the components M, through Mj;
represents the moment due to the vertical component of

the forces between the various parts of the source dis-

tribution.
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Reducticn of Some Integrals .
Many of the integrals which appear in the ex-

and I.y mey be rewriiten in

IX.

pressions for R,, R,
.other forms more aultable for further integration.. In

all of these expressions we have the integrals

) o -K($+$')+ L K(h-h)cos o
Hl= sec0do | € KdK (9.1)
g-x‘,“lo *isecé
-
and
T l"” -x(§+§) + ik (h=h)cose
Np= | secade] £ Kdk » (92)
J K-K,3ec’0 +ip tecéd

Yy fo)

have simple poles within %tue scontours

Both integrals wil
and the position of the simple pcles will depend upon the
sign of se~ 9.

a2l X Te fix the

Conslder,
pole of the integral, the range of integration with
respact to © 18 reduced from -W,TW to O, /2 .

Then the integration in © and K may be written as
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C b: 4
z 2 -K($+¥)
N zI sueaoj[ﬂ(o,u)- ¢z(0:x)]e KdK  (9.3)
[} (] =
where
. ik(h=h)css e
*a(e_,") a = — ’
‘ K‘K‘“C-e "'l}-l 2€¢8 . (9.4)
| : " e—ik(bih)we
! 2(6,K) = K-k sec*@+ipsece )

Choosing a contour bounded by the positive
half of the real axis and the negative half of the imagile

(o nary &xis, it can be shown that

' -K(f+1')

Lm.J P (¢,K)e ( KdK =

M>0 '
o

. N A - Ko(F+)3e 30
=2 {Kosoczo [e'x‘“' h)sec® - Kol sec ]}
\ L )

R 1R PPRIUR AT RIS

r (9.5)
(h“h)
+ rgl(m),"’- Ve D i
~o
(-] I
. n (h=h) cos &
-.\-tj $(m)e mdm J
o

)

g
E}
i

f‘i*,.?;-

s
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-df=

where (h'=« h) < 0, Here, it is to be noted thet LU->O0.
The expressions for (w) and ¥, (m) are as follows:
£ (m) = KoSectB [tosm("*")J-rmsonm(H?’) :
‘ (]

m?e K"ccc"e

 J
1 (0.9)

£ (m, - Ko sec’d [’"" m(.‘"')]-m s n(Hf’)
: m® ¢+ K:‘:cc‘é '

S I ey U YA TP

For (h'= h) > *. a contour bounded by the posi-
tive half of both the real nnd imaginary axes is chosen.

- Then
L
i © 3
‘ : -x(f+f')
- MJ ¢, (o,k) e : KdK =
M>0

@ ~m(h*h)ees o
’j‘ﬂ(m)e mdm L (9.7)

R AR NITRA & PR NPT
i
i

o® . 1) cosd
; °

dm

o

vhere again, MU-»0,

2 T T wzormm—_
)
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f Pollowing simlilar procedures, it may be shown
that

M0 2
°

d ’
- | L;n“[ " (OJK) G.K‘f")KJK -

. . - 1) guet
=27 {K.m.'a [EIK.U: hoecd~Vo(ft+f')see 0]}

; b . (9.8)
> - m(h’-h) o5 @
— | +J§Jm)e mdm

. 20
. W-h)cos 0
-t fo(M)em‘ deo mdwm

(-3 y

where (li'- h) < O, and

= w

W J‘ 4’1(0,“) ‘-k“ff')KdK -

a-»o
(-

-w '-
!'g.(m)e—m(h h)“’omdm o
{ {19.,9)

@ ~m{h-h)cos ©

+ 1 J. {z(m) e mdm)

waere (h'« h) > O,
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Substituting these equations into Eq. (9.3)

the result is

for

for

for

:
. ¢ ’
Ny=2 ruc 640 [-41]';.2 sec'e ;"““ )““m[u‘(l.’-h)uco]
Jo (9.10)
- i 8
+ ziJ 2, (m)e I hahlictes mJ.mj
R .

(h'e h) € 0, and

I SN et -m{h- .
Ny == 2J sccbdﬁ{ﬁJ gx(m)em‘h h)““mdm} (9.11)

(h'=- h) > 0.
For Nz the result is

I a *
Ny = st«‘eJe{ﬁr KsecOe Ki(Ertlec %n[g(a‘.;.)me]

r(9.12)
D

+ IJ'N;‘(M) e"“"""‘)“”° mdm}

[ 4 o

(ht« h) £ 0, and

e e - P, e e s
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for (h'=h) >0.

YL

sec OMJZ £(mle m”'-”“somdm

Returning to the expressions for Xg and

Xg » 1t is to be noted that they are imaginary.
substituting the imaginary pert of Eg.

Eq. (9.11) into X

By
{9.10) and

(9.13)

and Xg , real forces are obtalned.

5
The result is,
5 4k 3 +* h=-h)ces © ‘
=-ibpK,| [qranis] |oandt| secodo |z (ma™ MO rndum
0 ] ~°~_¢ Jg JO
Sl d¢-3 D 7
+06f Ko GA"“DW Cid‘a‘f- sec8db ;“m.)emlh-'hNOOm m
O'J-z '.JL' () [N
do dod ¥
o )secd
.fszirpif Y Jqdufjw Geieles x.(h-h)se:e] dé
Jody ves! ¢
VIR - o
+1bpK, d;'d&'df' Gdhét secGJBJ §3(m)em mdm
Yoy YoJi2 °
LR, el
_uﬂpk: J‘ GXJL'“' QJWJu P m[&(h‘-ﬁ):a&jJG.
o oV o /

+ (9.14)
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Further reduction on this equation is possible.

Consider the first two terms in the right member. In

the first term, the integration with respect to the vari-
&bles h and h' 4is over the area shown in PFig. (9.l1).
By changing the order of integration, the integration in

h and h' bDegsomes

t ‘
ja‘-dh}[q“" “ s e 0 .m(h‘h)¢“°. oo v (9.15)

4 A

By.interchnging h and h', the value of the integral

- 1= not changed. Hence the integratfion in h and h'

may be written as

¢ g : m(h~h)co3 0

' — P [%’Jhi[a‘k‘h e o o o & e o0 0 (9016)
h

in expression {9.i5), thnere is a iimitation on (n’=- h),

.1.8., {(h'e h) > O, By the prccecs of interchanging h

and h', the limitation on (h'< h) in expresssion (9.16)
becomes (h'« h) < O,

Now by comparing the integration in h and

€

2 St

v

%
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h' in the second term of the right member of Eq. (9.14)
with sxpression (9.16), it is to be noted that they are
tAantinal avaant fan thair aten. Thus tha awm af tha
first two terms in the right member of Eq. {9.14) is
equal to gero.

By & similar procedure, the third term in the
1 right member of Eg. (9.14) may be rewritten in another
form. For the integration in h and h',

i 1
r
- Iq’db‘J T, m[x.(h’-h)sae] dh , {(9.17)

4

-1 h

by changing the order cf integration and then inter-
changing h and h', the result is

-

rh
_ Iq'lh’l 0 cos[Ko(b'—h)sece]Jh. (9.18)
4] 2

Referring to Pig. (9.2), expression (2.17)

represents areg | and expression (9,18} represents

area \/ . Since cos [K‘(h'- h) sec e] 1s symmetric
or even about (h'= h} = 0, the total area may be

o o - —
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written as

Then

1

N 1 ]
[a;'a.’J‘ LATE [r,(h’-h)sa{, dh=4 l\o;'dh’[ohcos[ig (h-h)sece]ldh  (9.20)

4y

1 ]
d R

where the limitation on (h'=« h} hea= been removed,

Thus the third term in the right member of
Eg. {9,14) may be written in the form

z , rz -k (Fri')sec’0
~th pTOK, JH{ o' Jhdf sec’d e wE:,(b—h)secolde (9.21)

With these reductions, the force R, becomes

R.', = xl <+ x2 + x_3 + X4 +* X5’1' X6'+ XS" (9.22)

where xl, Xz, xs, X are given by the eguations

4’

——— . o = - D o o A e £ . S o e e o |
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following Eq. (9.12), and where

dal ad al f‘; “'1 )m.a
canit’] |gandtleece &7 cox K. -h)sec 6148,

J,L J,
[ ] , '
3(6' = 16 PKJJr:'"h'Jf"rJA sez 040 ;3( m) “'(""')"famam p
Chr Ty § o .

vf)
- 32TpK} JFﬂmr o dhdf sedp SBlirilsed® cas[k, (W-h)sec8]d0

>4
o
3
i

For the force R,, as expressed in Eq. (6.13},

all terms are real, Hence when substituting N, into

Eq. (6.13), the real parts are %0 be taken., The final
result ‘s

= 7 4 ' LI "
Rp= Zy+ 2, + 25+ 2042, "+ 2, + L'+ 2 (9.23)

where 24, 4,y &4z are given by the equations followe

ing Eq. (6.13) and where
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l a0
h=h)cos@
2,1 =-16pK, 'Jb'“[ suédéjt,(M)JM( Jeos mdm,
.
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L e
Ty = “P!‘.J J‘cr,'am' Jo;am sec'040 J A" M0
' L eV Jo o
d 1 rg_‘g X T
o G ) >
: -_~-.{-Z4 = - S27WpK, [[ﬁ‘dﬁw %Jh“ seclo e K.(f-tf)uc. In. '@}i’—*h,sa&]
J' .~.db' Jo
. st-.: - 159-91 [c‘;dw{j 5—"455.] éettédej 5. (m) meg..s,zwemdm
0‘*’1 ’ ' '_.! o o ;

d ivd

. Zg"= = 32WpK, I«;’am J
-1 (]

©

ﬂ

dhde sec®s e ‘““’m’“ [x.a.-h)me 146,

There 18 no corresponding cancellation of

.24' and 24“ as was ths case for R,. Also, 24"'

cannot be reduced to the integral over the entire dis-
tribution A becauss the factor sin [K.(h'- h) sec e]
is not symmetric about (h'« h) = O

By following a similar procedure, the final for

form of the moment L_ is
* My Mg+ Uy 4+ M A M2t a]:g

N n
t M+ My,
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where Hl, M, Ms,
l"‘

by the equstious follwoing 2q. (8.7) and where

¥, and M., W “9 are given

a4 n! =2 nd n‘!

3 K lf+f)5e270
L :umf (- é)cr.db'cH’A

M | sece e cosi{k(hh)seco]do,
- .-J_z g .; s

rd "z na =..f!

b4 ~D
' & M-h)cas® )
Mgt= 1bpK, (f'n.e)a"’lu{’ 0y dhdf secedel a(m)em( mdm ,

"O"z “ a4 Je °
ol WPTT B 1 i e

Mg"=-sump K2 | |(edayaner’] |apanis| secdec ot I s it secs] o,
‘O‘Li Jov it Jo

o ’T —(W-h) o8 0
u16= wek, h'axll'd{"[ a*dl-dfj sec’s JOJ f(m)e mdm,

[]

dol ir I
é
Jb'q'dh'l{'J Gdhdf | sec edej £,(m)e ilhileas mdm,
odi

[

= e
s e R [i(hth)sec0]dO,

. ‘o : % Lh)eeso

M= 1bpk [ b'OT'd.h'-!{'[ a.ahd§| sec'add [S.(m)em(h- 430 mdm

11 Fee A B i 5
J° -1 Jo'llrl ¢

r! (h*“h ).uo'ldé
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X. Evaluation of Components of R,

In the foregoing discussion, the expressions
for the forces R, =and R, , and the momsnt Ly acte
ing on the towed ship have been forgulated. To deternaine
the varliation of these forces and moments on the towed
ship, the various integrals involved must now be
evaluated, The evaluation may be by direct numerical
integration for a particular case or the integrals may
be evaluated analytically for a general case., In
either caseé the amount of labor involved is consider=-
able. In this and the following sections, the analytical
approach will be uaed so that later numsrical calcule-
tions will be applicabvle to any particular case within
the limits of the problem,

The present section desls with the various
components of the force Rx. By using Eq. (6.3), the
equations for the source densities of the well-sided

ships A and B, the rirst component of Bx baeccmes

htdh*arcy, (10,1)
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Since X; 4s an odd function in h' with

limtts of integration -I to 7 , Xy = O. This is

to be expected because, the total source sirength 1s

zero. It is in agreement with D!'Alembert's Prineiple
which states that, any body moving uniformly in an
unbounded 1deal fluld at rest at infinity, experiences

“no reslatance.

The second component cof Rx is

~d l ]
1 O Il { (i) }JHf (20.2)
’* JL [ln-w % (F+512] %

It repressntes the resultant horizontal force oh the
distribution A due to its own image system excludling
that part of the image system which tralls aft to
1nf1nity. To show that this component is also equal

to zeros consider the function

f(h' ’h) - h'h (h'- h)
[(h'- B2+ (£ + £ 2_]%

(10.3)




By interchanging h' and h

_ bh' (h - R')
f(h,h') b = s
[(h - n)24 (£ o ,:")"3]”2

or

£(h,h?) = - h'h (h'= h) (10.4)
[tar= m)2+ (£ + 1")2]:"'z

Thus

£(h',n) = = £(h,b") - . (10.5)

Hence f(h',h) 18 skew symmetric about (h' - h) =0
and for the limits -} to ! for both h' and h,

Ya= 0 (10.6)

The third snd fourth components of Ry .

represent. the resultsnt horizontal force on the dis-
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¢ tribution A dus to the dlstribution B and 1ts image
system, excluding the traliling distribution, Because
of the presencs of some common terms in the process of
integration, it 1s convenient to ovaluate these two
components together. With the definitions of the source
densities given by Eq. (6:3)

jrl
Xz + Xg= "5‘ Wande’ J(b—l.)(d. 21dhdf (10.7)

eV -1

where d, and d, are given by Eg. (6.11). Integrat-
ing with respect to f, f* and h' , the resulting

expression after some reduction is

Ll
bl T
Xzt X4 = -‘-‘-Tl;—z—}- (h-L)(L,*+ I,)dh (10.8)
e

where

@
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s ks it *Wﬁh‘-%%}fmwkg}gm;m-m P, B

e o = e e o

I; = 4h {[lh-u)‘+ J‘]%"[(hﬂ.)‘-td‘]t-d l.,, s [(‘;'::);*“J *"

d+ [(hel)'+ J"] t
lhei)

1
¥

+d L.{
]

P {Lh-z)[(h-n‘uf _ ettt 2]
z 2

(h-204 [t 4] ¥
(hel) f[(hol)’fj‘]‘a‘:‘.

‘1

*2

}

Ip = h{[(h-t)‘+ 44‘]* - [(neti'+ 44‘]’k

zgi{(h-l)!'r ad’] i
(h-1)

-2din

(hei)

+2d L»'I 24 + [(he1)"+ 43']%

_fwnlhead] o net)[thed)
L 2 2

(h-1) + [(h-00%¢ 407] 2

+2d° .
(h+l)9[(ktl)z+4é‘]1
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The exact integration of Eq. (10.8) with
respect to h is a long and tedious process, the final
result being very lengthy. A procesas of numerical
Antegration also involves a great amount of labor but
is more suitable because the result is more aoncise.

For numerical integration Eq., (10.8) may be written as

bz 2] : '
Xg+ Xy -i‘—;r—‘—J n-8leen) (A ra A, +Ay)
J2

2

+4(AgtA tA) + 2(aeq) (At A T ALTA,)  + (10.9)

= (Au"' Al’ + ‘M)] d’l

where y=(n - L)/21 and & =L/21. The quantity
A 18 the ratin of the distance between the centers of
mass of the two ships and the ship length., With the
definition B =d/2{, the ratic of the draft to ship

length, the terms in tbs integrand are defined as

s :?'%
Ay = {2870 ] -'-4pJ( .

T
1
A8=-{[2(d+7l)+l}z+ 4@‘}& -

A %t ; oy A T - o e g SR LTSI
—{i‘:m »iir Srin kel o STt etle Il el VARt
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-2

Az = -280w

28+ {[2 (d+h)~z]2+ 45_"}& i

2 (d+7)-t '

L
Ag= zpjwi 26 -o-i[z(d-ng).,.,;]z_,_‘wz}zl
2(A+n)+1 |7

L
2

Ag= -i— [Z(ah-){)-l] {{z(aw)—:]% 4pz} , .
2 )%
A= = [Z(d-r;()ﬂ] {[zldmiﬂ] + w‘f 3

= 4.
A= 25%m [2(a42)-1] + {_[z(,m,)..gi 4&‘}‘

7

[2@en)+i] + {[atarn)+1] ¢4§1}i‘

Ag= {[2(0(-?’1)-!] “r nbp’} * .

4

Ag=~— {[2(‘4-1-),)-'-:]14- 16 51} 2 5

L
46 + {rp-True}?
2(A+3)-? ’

i AN TRy e gt
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A= 451W| 46 + [zuwmq +u>6}

2(A+R) + )

Ajp= F[2(@ri)-1] {[z(otﬂz)"l_‘]i I‘P‘}% ’

tas= -4 o] { T e}

.L
[zetn)-] + {Rern-T% 16674 = |

4

[: R+ ¢ {[z(dﬂz)ﬂ] “up }'-

A1y= 860w

By choosing values for « and /4 , Fa,
(10.9) may now be evaluated. The procedure is to
obtain the ordinates of the integrand for several
vgluos of % within the iniervel = 2 to +d. Then

by Simpson's rulie itne approximate value ¢f the integral
may be found.

&

This force is analogous to the mutual at-

troction

g
JZ

atwan

twn hodiea. As is to be expected,

preliminary numericel calculations show that Xs-r Xg

is 8 very smell quantity. Individually, however, Xg

and Xz are not of the same order of magnitiude as

eidah AT fres
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‘ their sum. They are ,?ust about equal to each othsr in
magnitude, One is positive while the other is nege-
ttive. Hence their diffsrence i3 very small.

The component xst whioch repressnt.s the
wave resistance of ship A as 1f alone has been evalu=
ated by T, H. Havalock for a distrioution of doublets

instead of sources and sinks, It may be written as

X
Zr:. 2 2 s
Xs' =—16Tp X.J (P +Q")sec’s 46 (20.10)

where

P cos - ’ 2
} = J J a [Ko(h'-h)sece} g eltriase edhd{' (10.11)
QJ S$in

The results of the integration of thias come
ponent for the wallesided ship described in section
VI are summarized in the Proc. Roy. Soc.; Ser. 3,
Vol. 108, pp 582 = 591,

The component Xg' gives the resultant
horizontal force on the distribution A due to the
forces between the distribution A and the traiiing

A e A T R T G % ; 1 P TS L O TR % bl
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system of sources and sinka for the distribution B.
With the substitution of the source dsnsities, it be-

Ccomes

2 7-
X 's ""’“ 2ie o.dm' (;.-L)duf seco do

e’ L1

= (h'~h) cos &
xJ E(mde mdm

; J

r (1c.12)

where

k3 {r - o ’
é('")= Ko3ec O Isnn m{fe )J m co3 m(§+£’') (16,05}

m?+ %%sec?e

and (h' « h) < 0O,
The integral

Snm - d 3
J sec edGJ Kosecd [snmt] - meas mt _pycso
[

e mdm (10.14)

mby K."sec ‘0
o

where x > O has been evaluated in terms of the two

Fwrien
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‘> . variablea x and f by the Ratiocmal Physical Lgpcrn--
N tory (Teddington, Mlddlésox, England) and haéﬂbo§n~
tatulated (10). A numerical method of evaluatingwﬁqo
110.12) is possivle by the use of suoch tabulated re-
" sults, However, 1t will not be pursued hsre as the
range of tabulsted valiies is not sufficilent for appli-
cation in Eq. (10.12).
Using the substitutions v=m/K, ,
"k, (h = n*) = B, k,(f £') =D and integrating with

respect to f£' , Egq. (10.12) becomes

lp
-

5

w

é
(h-nJuJ[_I,w-Iz] ¢ (10.15)
=1

!
: 3 bie®
" %g' = -'-—.,-,':15‘-’5.—"- Jb’dh’

=l

where

Ky (f+d)
.
Il‘f' 12 =-fzn;6LMsec°— dM 49 . (10,18)
o Kf
) R cos vD e—‘DN cos eJ-y (10{17)
vy cose
(-]

The 1limits of integration K,f and K, (f + d)
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are to be substituted for the variable D, By using
the Laplace Transform of o¢os % Eq. (10.17) may now

be written =2a

” -
~VHcos 6
M- f cosVPcosvl | e & v
sec*o [ w0 ;-] .
¢ ; (10.18)
- - Zsec’o
X J(cos‘vr)e %,
o y
By writing
*_‘ csVDcos Vi = "i [cosV(Z+D)+~cas v({-p)]
and taking the Laplace Transform with respect to
-~
2
=;i-—;;,rr__"_@_&__ v _Hease |80 (10,10)
e ‘J Luzm'e+(m)= Heos 6+ (§-D)*

The derivative of Eq. (10.,19) with respect tc¢c D is

I' dM i d i " ' B efzm’e 42
dD  2sec®0 | dD | y%os'6 +(£+D)* H%0s"0 + {£-P)

i .

|

2

. e . " . . Y I e T T T
1 . ; I LS AR 0T % o SIERGORS" R AT R LR A
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J { -fsec’®
Hcos”@ +{Z+D)*  H%sd%0 + (£-D )JC tad

5l
]
x
"
(I
ya.
| go— ]

‘p
M _ _H ' Ru— g
dp zsecOJ HisT+(3+D)° Hios*0+(Z-D)?

(2]

(10.20)

(10.21)

Then by substituting Eq. (10.19) and Eq. (10.21) into

‘ eq. (10.16)

a
dM o r 1 ;;xczeég ]

Mae'8 - £5 = ~ 2
sec 9J H%os®e + (£-D)*
[

o d

Using the transformation A= ¢-D , Eg. (10.22)

becomes

©
o . *o[ -Asec’d
Msec®o - M - __H paectl e dA
dD sec@ Weos® +A?
Yp

|
“”‘f".ﬁ,.w":’5"m‘**“w~féﬁ(ﬁ~ﬁ_m* PR IMAERN
e

-

s e e e % e s

(10.22)

(1C.23)
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3 Then from Eq, (10.16)

.{ ® P X
-ASCL
I+ Ip=-H Fated ] I StatadediN I\ (10.24)
Hi%0e% +A?
e 2 e

Now by usliig the transformation tan O = x and inte-

grating by parts

X

11 + 12 b “"I HdX
J xR 0ex®)p?]

(-]

o (10025')

. © _atex®)
e_p(,,.,z)“ r HA €

+2 d
| [+ 0oy
° -0

»

By letting x be a complex variable and
choosing a contour consisting of the upper balf plane,
the first term in Eq. (10.28) may be evaluated as

[ HJ' = L8 [“' '———D——'!- . (10.26)
Jor [ie geor]  2HL (0o}t

o

It can be shown that the second term in

ti s 5 W e gl ‘ rwﬁ"_ﬁf' o ki el
3 =
i e i i



Bq. (10.25) 32 of the order 1/HS . For practical
purposes the magnitude of H 4is such that this term
may be neglected. Then from Bq. (10.1%)

‘rl *‘ *‘(h‘)
1o OPKebie'[ 'r r.:__ I 10,27
Rgtas * N [wav]| temiaan) [ .4?!?‘:;.‘-*]“ (10.27)

-1 JL‘!. Jo 'x.f

Now by completing the integration with respect to
h*; £ and £' and using a(h - L)/27 e A=L/20
and @& =d/f2i

’

4
Xg' -:-8.%’&35.&: b [(s;a&)--%{a'-ra“)*-‘gag- 88,
4

=48R} {3+ By) + 264-4) (B +8y,)  (10.28)

+8 (4+7)(B,4B2) - 8(4+1) (B, B,a) | d7

2
B = [z(«q)-a] {[2“9-)‘)-'11* 4aa}l ,

By =~ [z(dh})ﬂ] {[Z(d*’ll‘fl]x"' 45‘}‘& ’

g .o

i ? . ” g - e
LR y PR L R L e
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——n o

. 5

= [2arn)-] {[ziarn-1] 1667} *

B, = -[z(dfq)-r l] {[z(au ;l),']zf " pa}‘k ,

[z(o(-rlu—l]f § [zta+)-2T% 4@‘}
[z("*’l)ﬂ] {[&(c(w;)-e-ﬂ % 45° }ﬁ

Bg= A%in

’L\.ILL“") -]+ {LZ(d*n)-t] + 168 }
|2@+n) +1] + {[z ‘Aﬂ)ﬂ] ¥ up*}?-

B,* {[2(&4-')()—3]2.,. 4p2}4’: .

= {[Zldi-)g)ﬂ] *+ 4@‘} z :

Bio {[z(u-izm:]l«n- :L(Sz}t .

S s T2t T s Y ke o e .
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-72a

26+ {[z(am)-r]i ae* ié

2(A+x) 1

= Al

i
By = ui z8+ {Gurned v a0}
2(aty)

fr:’ AdAY-t & 'Y} %
Bls= f"l“‘ | 45"‘ IL-"W, }_'] +.-§g}‘
2 (/4n)-1

(31

o =-pbe| t0r (BT k6’
l 2{d+n i)

Then by following the same procedure as for
the component Xs X,, Xg' may be evaluated.

Finaily, the component Xe"‘ which reprasents
part of the rorce acting on ship A due to the wave

interference caused by ship B may be written as

b Les
Xg" =~ 22BKI¥ e [J h’db’.li'ﬂ (h-Lidhit

LA
(] —l [-) L'l
. r (10.29)
2 - k. (f+f')sect®
)(J sec’e e e ‘ m[x,(h'-;.)sec 6]49
e /

et e ; e
i o PR P TSESEPN T
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Integrating with respect ¢to h, £, h' and f*

8 TRA

X.® - ﬂg‘fJD-ix‘“"" :{z(x:t':a'e+ co8’8)eos (k). sec0)
[ ]

f((!-'wa’d-cos‘e) cos (Kol sech )+ 2K, c0s sin (kL. secé)

+( K’,‘l'ons'e - m‘é)w(uzsua) -zrl os'Osm (L',L!sece)] dé
J

L (10.30)

where L1=L-21 and Lo= L +2¢ . In complex

notation Xg" may be written as

X, *u- 2EHE [.-é"“‘"‘_]" 2K T8 readfo jous (v L seco)
6 FxoU4

2 ~ikl,seco ]
€

+ Real part of (m‘é(x’lucoﬁ)‘cu""s“ OJ}JQ :

e ———
Eha Tk Sensy L IRGEE e S £

/
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¢ To evaluate Xg", consider the first intse-
gral,
4
T = JI ﬁ-é"’"‘"] (Kt e+ %6} cos {1, L22ca) 0, (10,32}

Letting p = 2K,l ., K, d = £p where /2 = d/2] and

using the transformation

s6c 6 w1 +¢t/p (10,3%)

with

it

b=
(zyt)'t (1+ -t-)(u» i%‘ )t

(10.54)

the integral J, may be written as

\
sp-f26-ia)t+ 4 e -zpp-(cﬁdd)rﬂ

et (14 5) %

I' I1-2¢

 (10,35)




where «=L/22 ., Each term in the expanded inte=
grand 1s of the form

i 3 ik ST
T e (ieg)d ARk

where Y takes on the valuss 3, 206 , 48 .
A close approximation to eq. (10.36) may be
obtained by expanding

3T [Tiar sy

in ascending powers of 1/p and integrating term by

term, The result of the expansion is

i A
i 74 < 2 4 3 2
L - (R )
> (10.37)
r’t _ YR vt s’ x
Uit eyt -.Zﬂ.-m - 2yt% z.st)—'v- J

For practical values of pw= 2K, » the expansion to
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1/p® 1s sufficlent., With this expansion, sach term
in Eqe (10.368) is of the iocrm
L
r-7 ~(¥-id}t
t % € ( ) (10038)
where r @0, 1, 2, 3, cceon . .
To integrate these terms, %liic Lnowa relation-

ship (11)

J. c"tti-'dt -5 T(z) (10.39)

where the real parts of x and 2 are pozitive and
T (z) 1s the gamma function, is used., In the present
notation Eqs (10.39) may be written as

= - )t +
Ith*e S ai* r("*'{)sr ie;("t)“ (210.40)

where

st

= (' o F .
(10.41)

6= arctan 2 .

7



.

3 ' Using Eq. (10.40) and the expansion given by
expression (10.37), Eqe (10.36) now becomes .

Jl'fnlru*dffE:;EF{

= [Q.(o) -zc'”q‘ 0S)+e WQ.(AP)] (10.42)
' i

®
+
FS
-
18
o
“
g
o
+
»
o
)
L
i
| -
'-

> (10.43)

- B7278 o ie*“

isgs £ Tid
” Toz4 §'e

t o2

. o 1 .
+'::')’S£e fio, %S‘ezm] -:5 4 reve

J

with g=0,2 f , 40 1in turn, and § and ©
teing defined by Eq. (10.41)
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& Now consider the second integral in Eq.

(10.31) and let it be denoted by J,,
T = Real vart {\ { - X.Jscc."‘]‘
g™ Reai part of | [i-e

X [ws-"e (K lsece+i )lc-“‘,l.,sge, e] dé

Using the same substitutions as were used fcr

-
0"
L]
)
g
3
3
©
-
il.‘
»
=

il e r] L)+ 81
J t*(H-"—) (a-o-f-)'l'

P (10.“)

+ - (10.48)

where '= L1/2l o« Following the same procedure

Ft-ad'

Jo = Real part of

whera

AP R R N SR e T R e L S L I T T S O AT T
'} - ’e- r . v

1 s e e e R Y T

T [Q {0)- 2e”" Q(28) + ez”Qt(‘Iﬁﬂ (10.48)
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> {10.,47)

_ 16048 2 ¥ is 1€ 57276 -gie
“tozg ¥ d'e £ (“ IY T024 r)sa

3072

. (ur iv- nana;) si {-no ({-Y* %,’)sf‘-fio

with Yy=0, 26 , 48 1in turn and
= arotan A7V,
Similarly for the third integral in Eq, (10,.31)
denoted by ‘18 >

r

2 i Ay -2
Jg = Kea| part of‘[ [l-ex'““ 0]

f (10.48)

X lL-co.s‘a (k.1 secoﬂ)‘ci&l"'“ce:! do

e O S B B PR e T SR DA o T T s oy e
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the result is

RTY, s o
3 = Real part of :('l—i;{f]-* [0,00-26"Ta, 101 +e o 40)] (20,49

where d'=Lgf2l , and Qz( V) 4s the same as QQ(7)
with the negative sign on the exponentiesl factor
changed to a positive sign. The definitions for §
and 0 ere 5=[A@1Ttara 0 = arctan VAR
Finaelly by substituting Jas Jo, and da

into Eq. (10.31)

» 32Pb%e?
Xs = - FETK“Z: i:zd; "'Jz‘f JB] . (10050)
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i' XI, Evaluation of C'omponents of R,

The first vertical component Zl, the;iesul-
tant force on the distribution A due to the forces be-~
tween the dlatribution A and its image system, exclud=-
ing the tralling system of sources and sinks, may be
written as

1Pb%c® t ?
zy=- 0% [n'd»’”'[ [hB, dhdf (11.1)
) 14,
¥ o= et
2 where
i 8
£+

‘6' - [(h'- h)2 + (£ + £t )2]95. '

Integrating with respect to f', £f and h*

3
Z.= =465t | A n) dh

,
t11.2)
1w e
-1
e T
A >

\

~ o g . S s i . e g -~



where
€(n) =4 {[(h-n%a‘]t— [(mz)‘ﬁff- [(:.en‘ua']i _-. '7".
# [ieareaa Tt a2 o (5
"““‘-'(hf‘l)'é"d‘“(‘hi?)"f“d‘d("fi!)} b {11,3)

+24h {-sml."(-':-‘ﬂ) cewlal (B memb el

....hw'(pz_};)} :

As was done previouvsly for the ccuponent

Xz + X4 , the integration of Eq. (11.2) with respect

to h may convenlently be done by numsriesl intagrae-

L

tion. By letting T = L/21 with g =a/21
]

Eq. (11.2) may written aa

T_-u‘;“ SRR B TR R e e L

-

PR wy RO A TR e T ARG

T —
Re B ho bt S

e - e i i i e 20 -
- —



-— 1LPb%e*
Z -—-i_-& {zpr [D.-O- D,tD,+ DJ
+7(+41%) [e v D, 4 D ¢ D] i 13 <4}

Ar
“w 9

i
+88T Ipvo,+ D, + b,

11
%)

whare

= [ (27-0)+ 467] ki

D, =~ [(z'rn)z-r 4p"] ¥ y
2 4L
Dy = - [(215:) + up‘}* ;

D, = [(n-w)‘-r léﬂ']* )

4
Ly 26+ [arn%4e7]®

Dy =
(27 1)

R AT AL AT DR G oo s v " p— S ' &
r& L T Y B A B T R RS T TS s Ao AL T

s
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Dg = - In 2B+ [f21+1)% 462] %
(27+1)

?

I 46+ [ar*+ w6 ¥
{(zv-1)

Dg= 4 b 26+ [T+ el
(27r+1)

Dg = -l {(z'r-l)-r [(rr-l)‘-r 493]%} 3

Do = be {(zr-u)-r [(z'm)‘q-w‘]%} ,

Dy = b {(ZT‘-I)?BZT-i)z* uo’]*} ?
J

D1e= bn {(z‘m) +[(z'r+a)‘-r u,p‘]*} ,

By choosing values for /,§ and using

Simpson's rule, Z; may now be svaluated,

(]

Y E T P RGP P = avermrom = s
I = P o P T A T S T 20 s ST TR 1,57 | i,
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The second vertical component, Zs , tho
reaultant vertical force on the distribution A due to
'the Torces between the distribution A and the imago
system, excluding the trailing system, for ths distri-
bution B , may be written as

49L‘clr‘fz
(2 -,-i{-'i',’-. Jhdh'df’l J(b-L)p.auf (11,5}
=1

oY= [ )

where

_ £+ £
‘o[- w24 (2 4+ £0)2]E

This component may also be evaluated in the
same manner as the horizontal component xs-r x4 a
Integrating with respect to £', £ and h!

4plRet ”
Zzg - -_l—r-l—"- J(h-L) C(h)dh (11.6)

(K

where C(h) is given by Eq. (11.3). Then again, with

PPk a, 4 T ke AR R BIEW B e - e L PRy
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y=(b«L)/2t , d=L/2Ll , g=a/al

+ [5—4(4-&@\,'](:,*5'_&,* e.) +8 (dﬁl)(!." +e,,)} Y4

where

g {[z(&-n,)-l]z-} 4&'}* ’
Bp=—{| “r apr}
i[z(dw,)-rl] +4p} .
ro == fEern T e]
_— { N S -
4 [z(«-mm] + lcp} s

Eg = fn

265 + {[z(dﬂz) c'l + 46 }t,
2{d44) -1 i

Be = -In

28+ [2(4'";)-0'!] +4pii’

2(d+4)+

. e CATL T R R PR T S MR R TR W

.};

C(11.7)



&1
= ..L + fl2(@dry)~t -
B,=+ b |43 I_ A) ]+up I ,

2 (aty) -y

Bge th. |18+ {BwmaTy réﬁ‘}t'
2(d+7) +1

?

I L N2ld+n)-1 J«y {[z(d+x)-n]'+4¢‘ t ,
[zldﬂ)fﬂ f{[l(&?h)-ﬂ] +46° {

Eio= In Jawp-d+ {[Z“f'l -] 2+l‘5‘}"t
[z(am)ﬂ] {[z(ew:)ﬂj +16p }*

Again, by choosing valuss for o and & ,
and by using Simpson's rule, the approximate wvalue of
the integral may be found.

The third vertical component, the resultant
vertical force on the distribution A due to the forces

between the sources and sinks in the distribution A
and B , 1s

4P',zcl 3 Lol
2y = - = [h’ése'w (h-1) B, dhd§ (11.8)

o<t} o L~}

P S o bl s
G S e RS ANS SEBIER e TS e L g S U



¢ where

£ - |
[(h*= n)% 4 (£+ r')z]'*

b,

That this eompoaent is equsl to zero 1s not
evident from Eq. (11.8). By integrating with respect
to £' and £, Zy may be shown egual to zero. The

first integration with respest to f' gives

] vl
I3 : e
% =T J"‘”"l J“"L)F‘”“" - (11,9)
‘ . o } Jo -t
.uhéro
i )
F= - — (11.10)
L)+ (8-4)*]% [ §2]%
with H' = (h « h'),
Then by integrating with respect to f , it
may be shown that
Za = 0. (11.11)
&

:”.\'u. o R i o A g ) LML g 3 - ST TR R TR AT T BT e
1 :
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The components Z.° Z L zs“ may Qvalu-

- 4 H
ated in the same manner as Xg'. By following the

‘:,sama procedure, it can be shown that these cémbkhéhtu

&rs of the order 1/u“ e AS In the case of the hurison-

tal component Xg' , these small terms will be noglec-
tedo
The components z;' and 25" ocan be .

~evaluated in the same manner as x69 e The conmponent

vmhu‘ﬂ b P 5l e

{

" v gresar

z:“ reprssents one part of the resultant vertical
force on the distribution A due to the forces between
the distribution A and the tralling system of sources
and sinks bshind the Adistribution A. Substituting

the definitions for the source densities it may be

written as

2t pipt
zy' - 32_;;.'» J Jh'al.'u Juhdf

-

= - Ro ’ e -3
X Jsec 0e prifijset s [K.(h’-l.)secéj dé
[

Integrating with respect to £, f', and h!

2 Ry o . e 5 = N . .
S 5 3 SHTELS P I ORI T e L
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STl TS YRR

R L ] TP, e RR RN e 1o ) SR oo
.' - . - o o—

¢
o M 128Pb% ™ Be=ale 1.1,
4™ —-—-ff" [ t[c»"e -};w Qja (p’eté)
Jo .
' (11.13)
+ -"g-m’e cos (precd) + .-;-me]de }
wvhere p = 2. and Sp=Xd.
In complex notaiion, Bq. (11,13) may be
written as
! 4
W, . R8ptlet -PpsectpT *
s 1= [ [ ]
[ ]
— X.[[bmg.fwrfﬂf {ws‘& [_g.,e -@-‘-,—,':-]ez"’“'a t (11.14)

iy + __?;_.m S_B de

< y
Using the transformation [10,.33), Eq. (11,14)
becomes
L4
2] =- 2’ be® ,-lms, ?artof.a__ Lrir]  (11.a%)
@* J
%
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e [l T o8

Jt (11.16)
SITERO

o
When expanded, eath term in Eq. (11.16)1.
of the form "

e o B g d]
g (n £ )

where Y takes on the valus o, 6 z2p,4E-
Now by expeanding

e.-g:’t"a [(“"%) i %J )
(,+.;.)‘(.+g;_ :

in asceénding powers of (1/p) and using Bg. (10.40).
Eq. (11.16) may be written as

" s =
iy = T* [Q, (0)-2e‘sPQ4 (*?)"‘szQ‘q(‘?)] (12.27)

AR BRI LTS AR LTI W TR IRL T TR S A
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Qb” whera

o ( v )= skt fpnlio 2 1 X% igfeti®] 4

' : £ &
+[§{7‘8‘c*§'f g,i‘,iw_’ (t5-4v £ 3,519

= l}isi‘Qia_“s&e{iO] ’;i
4 [:_ %fﬂqefio_ L‘z‘%sqe{io

+(efir- zzsqr,)s%e%50+ (51‘ Ly 48088 )d,i"t‘

32 ¢ 1224 2072,

"'('i‘ ao&:f‘)sf{ *3_“!! ]_L*,n,,

with

§= (.x‘-fl)-i )

® = arctan Jf

Now returning to Bq. (11.18),

-va-a; PR s ant b e e K3 ARSI R et O g R hv i BT TR T TSR A
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¥
T,= J [1~eProecte _"l‘m ede, (11.18)

By expandine Ra. {1],18)

I S )
- © R
IC‘J“‘GJG = ZJ e Botses cocs 846 .

1 :
+ Je'm‘m ® eeedo,

) y

The first term is equal to one. The last two terms

are of the form

X
2 2
1‘9 "J e.;“‘ ocuOdO

where £ equals K,4 and 8 Kk, d.

By using the transformation ses°9 = 1 + tz

-f -2 g2
I,0=e [(n-t') *e T dt, (11.21)
Jd,
R e A NN S R I TR S TR INTYIR E, ak

e W e v e



£ R = i
Weml F1=22 £ 09 (o) o Vaasdt - (11.22)
(% -xew) g
o ﬁay be used. When k = m = =
Vop,-3l F PN AS {11.23)
T(%) ' |
Hence
- -2 ~5¢*
I,0=e d (+t?) T e ;tdt = W 1(5)‘!!"!. (11.24)
~1,-4
Then
I, =}~ * *
4 =12V, kT *+ W, | (2k,d) T, (11.25)
“237% 14

e - T8

Eq. (11.21) 13 in a form such that the confluent hyper-

geometric function (12)

~K-§

Loy ]

w-toem

Por large valuss of [£] wken

o B TSR I 0 3%

T T e NN T I L

jarg §]<W-¢<T,
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the asymptotic expansion of W __( ¥ ) is given by the

k,m

formula (12)

— o o

W al 3 )~ "{nz I te-AF ][ k-] - - Lm-«-nftﬂ}

L n‘ n
e (11.26)

When k = m = =} , Eq, (11,2€8) reduces to

et S 1 1515 . 99225 _ .
-io-i( 7 )~ ¢ [ 45 325' AT TR ]' (11.27)

The expansion of the confluent hypergsometric

funotion for all values of § such that |erg sl< T
and, for values of arg £ such that < |arg §| < .§1r
is (12)
w (s \—{fj{k :;)P(-s-x-m«-{-)r(-s-n+m4t) 5
= 2Tri T-%-m+$) T (~Kk+m +%) Fde \ida26}
-cn }
Whem kX == = -3
45 4 [
Wy il 2)= eBg T()T(-s+2)P(-s+%) 4 , X
(2 = P E (I $ ds (11.29)
~o\
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; 3'='_.t'fez==-.=. By using a Imom result; Eg, (11.20) m bo

The 1nteg§;1 may be evaluated by calculating
the residves at the simple pole when 8 = 4, and at
the double poles when 8 = S/8. 5/2, 7/85 « « = &

The calculation of the residue at the simple pole 1s

; sfmple enough but the doubdle poles pose & mors ditfi’-
,'.041@ problem because the residues involve 1°striﬂm’-°

evaluated without euamting the required reaiduea.

When k= m = =~%/2 Havelook gives the .
reault (4)

> " (11.30)

T'(h* 4
T‘ln-ﬂ)l‘(n-z)

ned

where Y is known as Euler's or Mascheroni's conatant
and 18 equal to 0.5772157 «ve o+ ( As a point of

interest, the value of Y haa been oaloviatsd Ty

J. Co Adams to 260 places of decimais, ) (18)

From Eq. (11.350) Havelock obtains the result

- T % T R R R T A I S T pAT
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. .

2 5 —$secto -g )
[Feos®s 2 TREY {:-f:*;{- By gt
J,
(11,31}
—-3‘—’- & ) — 'r ‘ "_' T e ’ J— 3
b +(, 5 =% t + )m4 Yf} g |

By differentiating Eq. (11.31) twice with ronpoct co

3

, the requirsd integral, Eq. (11.20)}, mny ‘be ob=

_tained without calculating the resifiisg at ths siuxple
" and double poles. The result is
&~
|
H -£sel’o -5{ z 7 3 79 _4 A
chsee do=e divdfele- g -y
o (11.32)
)

By substituting the appropriate expression
into Eq. (11.18), HI4- may now be evaluated.

Another method of evaluating Eq, (11.21) is
possible. Integrals of this form can be evaluated in
terms of Begsel functions of the second kind of orders
zero and one. Ccnsider the integral (13)

"

. A T L NI R e I R A P o
! A

&
" . ot i o e = < Sy = <
SO
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‘h

©
t

Ry Y a2np! 9
“en + 1“] o T ar

where n is an intarger.

This may ®e reduced t0 the general form

L = Bt gn-1
4

gn+1 Lon -3 =

=
)
v
[3)
5
)
7

o 'Y () .
= '—‘%’IJ e‘#(;«n‘)qzt— ‘?5;! J‘ ¢ "(aft'}‘Pdi Jl

(11.33)

{311.34)

Starting with n = 0, it can be seen that if I‘l. and

I'-l are known, all the other L's may de deternmined.

The definitions for I‘l and L_l are

[ -]

T Y <
L= |s & (1+¢*)" dt

% . A e S AL T DG i T
| '

Y, i s 5 o0 3 3
[ 1 s g———

(11,35)

(11.38)




'L_s may now be found from Eq. (11.37).

To evaluate Eqe (11.31), from Eqe. (11.,%4) it may be
written that
[ -] N * ‘.
-ft -3
Loy ™ [e (1487 at ‘
Jo B {11487)
=25u-L]) . H
RS g
By applying‘ﬁhe transformation ¢ 'iiﬁh

%o the integrals L, and L_, , they can be tpans-

formed into known axpressions for modifivd Bodabi;‘

Functions of the second k¥ind K, snd K, (14). . °

1, = telx(g)

y, =4t [R)E ()]

Since the fumnictionc K° and xl sre tabulated

Henoce

oy

L % Moo, ~ AT A
P i i ara e AR 0T

S I AN R M TR 7 T35 S ™

e & —— e om—— et o 7 8 1

(11.38)

(14),



i

s [ -3 et
I.'= e~ J L1+t®) e it
[}

b (11,39)

- $ )£ (3)] .

The latter method of evaluating I 4' appears

more soncise and will be pursued hers, When ¥ =k d

-Ked
I'= tkde ™ [5 (%) -7, ()] . (11.40)
When ¥w2K4d
It = Kd e [K.(x,d)-x‘(n,d)] : (11.41)

Thus, from Bqg. {11.19)
.,35.4 ;s 3
Ig=1-=kde [K.(E;.-J)-K‘(S:—)‘]
L (12.42)

rrde kd {K', (k,d)-X, (K.J)] .

R LS e AR 7 S R B AT, VT M NG
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Fow by substituting I; and I , Eq. (11.17)

=nd Bqe (1ile i3] respeciiveily, into Bge (11.15) the com=

ponent Z/" may be evaluated.

The vertical component, 25” » One part of

the resultant vertical force on the distridution A due

to the forces between the trailing system of sources
and sinks dehind the distridbution B and the distribu~

tion A 1itself, may be written as

az P&zb'c" : dpask
Zg"=- KaNde’| | (n-L)dhd¢
Tl
o -3 ovIR

x
r2 = N2
X J sac' {"”( l’o‘b'-h)saco]}cx"“d Jsec’e 20
(-4

r (11.43)

Integrating with respect to ', £, h' and

h and writing in comples form

I
.2 * 2
s | [ st
s
>

+ lmog. part of [ws‘e (xlseco+ 3)‘(—5 ""‘"’“o) ]

+ Imag. port of [cos% (tsecot i)‘(c'"""’“‘)]}de

N\

L (11.44)
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~where p = 2Kl , Spu=Kd, Ly=Leg2l and ',- L+ o2
Now by using the transformation given_;’_c’;-

Eq, (10.53) end using Eg. {10.40)
" 52Fb%" !
with the following definitionas for Jgs 9s and Jo.o

Js o |Ma9.fur't of ,z"

,*r*[o,(o)-ze "QeA+e P QU] (21,46)

2l ¥ ) = g F ki, el bl L

1 1ie 3 fie 0 .4t
J'“’w‘: + M ys% ﬁ'f‘f 457 ‘J..

[w “{ ?l.* 'gﬂ-r‘xg'e'."SG __ﬁfsi *l‘

8072 1024

e 5 £4 3
%—Js’ $ s 3yt °+§$§e‘°°];l‘+....

with §=( ¥ dz)'i end O = arotan R/ Y ,
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:-,;',‘_‘_r: *

Jg ™ maq. part &-—Egﬁ;r [qe -z;"a‘(zp)«ré'"q‘(qp)] (11.47)

where

(V)= Si;*ie- r—%ﬂfe.ﬁ., 8.5*5’30_.435!;!30]%
e gt g e

-mgdrdio ygds *“].;,- [w,}:'{"‘“

3072

+ IEM;‘;?;’{N_ (%“;_ 35.’.!:’:;') Sle.*io

1024 1024

-(zafiv- 1202 T pa g Lo

1 3072

v 4 -die
- gt ];';,....

-4
with 8=[¥'~r(d')1}alnd @ x arotand’/ ) g

- Wy 4 o
3, =Imag.part of ‘l’%;-)-{w [46)-2"Q,c813%0,40)]  (11.48)

T WL s SR P TSl e ST T 1 O i S ] T i PO S . .



-104=

€ . where Q,,( Y ) is the same as Qg V) except that the
B sign of the exponent of the exponential factora is
positive instead =f negative; and where §=[r’+ (d"}'J-t
= arctan &'/ ¥

~

= PONTP RS 8 11540 W 5 2 o NGB TR AN Y AN 2 S L T YT el
t_:.
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XII. Evaluation of Components of Ly

Since the integration of the various moment
somponente f2llowse the some mrocadurds as were used
for ths forss scomponents, the deteiled steps will not
be indicated in this section. Only the final results
of the significant components, Kg', Mg", ¥;o and
¥,,", will be listed. Ths other components may be
evaiuated by the prcc~dures indicated in the previous
ssctions. The components Mg' and Mg" represent
moments dus to horizontal forces while "13' and ¥,,"
are moments due to vertical forcea,

From Saction IX, the component "5' may be

written as

! ded 1
2
Mg? = &::%&TL("..MM’J [ J hdhdf

1

(]

; ; ;' L 3
XJ%’O :K. (Fefloed gu[x,(b'-h)suajde

By compieting the iatégration with reanset to f, Y,

S T A B TR Y b g A T T S

p (1201)
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h, h' and @, '5' may be written as the sum of three

parts.
LY : Mgy '+ Ngp'+ Mga'
ke expressions for N 1 » l., » and "53' arse
My ' == v {-" A W7 D M)
+ %‘.’”'L_._,(zpp)-r zc'x"a._.'(app)

8§ Fwe

L™ aop) + 26 *F1 (2gp)

+Foal part of i!‘-t-" i [Q,(O)'zo Q,(3p)re 7 (40)]}
2p)a

- 1660%d { p* - +2¢°L (0p)
i P{ lP.P) e L (pp

- ¥R S ppl-ze Pt;.,(wr)

t Real part of (‘rf*[-”Q(’P "C" ("Pz]}

IS I A O S R I A Y DB M AT N s RS L

(12.2)

r (12.3)
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(12.4)

.

where
L y= 2.8 £ \
Lo (8) = Fet [ox(f)r0-nx (£)],
Lop () = 5% |5(-5+4) B (£)
2 ’ .
s(stizeam(g)] :
ot
Lg(2) = 2. f; 2525 +3)E(£)
+2(-§?r2§ 45-"6)2.(%)} -
and
A Y
Y= sk "+-r 2psf e, gt tie]LL
% 8 =
165' % 2'6 374 Z c‘e 2'6? 3 {;_-;e
[324 ‘ g 64 S (-';-";N)Jc
Bra t Lia - .
29 F F 304 i 2Aus S 2 Q(e
-8 -48 Loy eons 2
e € JPZ+ 30720 0 €
??{ﬂflé%e%"ﬂ('.ofwz Lk Y )52 216
1024 \ 24 j6 24
438, 3562687 3, 219 o2 fio
+(l$ L 5072 )S ("‘3'7 32 ‘/ §%e®
- 1
r 225 1)
.i. e? ]_._ * Flte e

Lo Ny SRR ALY Hi gy T

(12,5)
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In Qe( Y), §=( r*+ 1).i and © = arctan /).

Qz{ ¥) 1a obtained from Eg. (10.47) =s explained after
- BEqe (10.49), However, when Qi( ¥Y) 1s used in Ngo'

and Mge® , 1}'} and % =arctan 1/Y . The
£'s in the L{2) functions take on the values ',g,,
and 28p as indicated in Eq. (12.3). The functions
K,( 3 /2) ana Kl( % /2) are modified Besssl functions
of the second kind.

The componsnt Is" may be written as

péntel
tl [
M == EI&.LJ[(; )hdb‘i}l (h-L) dhd )
° Vo

6 T4 '
g HE
E L (12.6)
{ £ 2
+{)s6c°®
R )(Jscée elfimicess cos K (h- B);ccO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>